23 research outputs found

    Multi-scale Regions from Edge Fragments:A Graph Theory Approach

    Get PDF

    An Efficient Industrial System for Vehicle Tyre (Tire) Detection and Text Recognition Using Deep Learning

    Get PDF
    This paper addresses the challenge of reading low contrast text on tyre sidewall images of vehicles in motion. It presents first of its kind, a full scale industrial system which can read tyre codes when installed along driveways such as at gas stations or parking lots with vehicles driving under 10 mph. Tyre circularity is first detected using a circular Hough transform with dynamic radius detection. The detected tyre arches are then unwarped into rectangular patches. A cascade of convolutional neural network (CNN) classifiers is then applied for text recognition. Firstly, a novel proposal generator for the code localization is introduced by integrating convolutional layers producing HOG-like (Histogram of Oriented Gradients) features into a CNN. The proposals are then filtered using a deep network. After the code is localized, character detection and recognition are carried out using two separate deep CNNs. The results (accuracy, repeatability and efficiency) are impressive and show promise for the intended application

    Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: analysis and comparison

    Get PDF
    In this article we analyze the response of Time-of-Flight (ToF) cameras (active sensors) for close range imaging under three different illumination conditions and compare the results with stereo vision (passive) sensors. ToF cameras are sensitive to ambient light and have low resolution but deliver high frame rate accurate depth data under suitable conditions. We introduce metrics for performance evaluation over a small region of interest. Based on these metrics, we analyze and compare depth imaging of leaf under indoor (room) and outdoor (shadow and sunlight) conditions by varying exposure times of the sensors. Performance of three different ToF cameras (PMD CamBoard, PMD CamCube and SwissRanger SR4000) is compared against selected stereo-correspondence algorithms (local correlation and graph cuts). PMD CamCube has better cancelation of sunlight, followed by CamBoard, while SwissRanger SR4000 performs poorly under sunlight. Stereo vision is comparatively more robust to ambient illumination and provides high resolution depth data but is constrained by texture of the object along with computational efficiency. Graph cut based stereo correspondence algorithm can better retrieve the shape of the leaves but is computationally much more expensive as compared to local correlation. Finally, we propose a method to increase the dynamic range of ToF cameras for a scene involving both shadow and sunlight exposures at the same time by taking advantage of camera flags (PMD) or confidence matrix (SwissRanger). (C) 2013 International Society for Photogrammetly and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author’s final draft

    Effects of a high-dose 24-h infusion of tranexamic acid on death and thromboembolic events in patients with acute gastrointestinal bleeding (HALT-IT): an international randomised, double-blind, placebo-controlled trial

    Get PDF
    Background: Tranexamic acid reduces surgical bleeding and reduces death due to bleeding in patients with trauma. Meta-analyses of small trials show that tranexamic acid might decrease deaths from gastrointestinal bleeding. We aimed to assess the effects of tranexamic acid in patients with gastrointestinal bleeding. Methods: We did an international, multicentre, randomised, placebo-controlled trial in 164 hospitals in 15 countries. Patients were enrolled if the responsible clinician was uncertain whether to use tranexamic acid, were aged above the minimum age considered an adult in their country (either aged 16 years and older or aged 18 years and older), and had significant (defined as at risk of bleeding to death) upper or lower gastrointestinal bleeding. Patients were randomly assigned by selection of a numbered treatment pack from a box containing eight packs that were identical apart from the pack number. Patients received either a loading dose of 1 g tranexamic acid, which was added to 100 mL infusion bag of 0·9% sodium chloride and infused by slow intravenous injection over 10 min, followed by a maintenance dose of 3 g tranexamic acid added to 1 L of any isotonic intravenous solution and infused at 125 mg/h for 24 h, or placebo (sodium chloride 0·9%). Patients, caregivers, and those assessing outcomes were masked to allocation. The primary outcome was death due to bleeding within 5 days of randomisation; analysis excluded patients who received neither dose of the allocated treatment and those for whom outcome data on death were unavailable. This trial was registered with Current Controlled Trials, ISRCTN11225767, and ClinicalTrials.gov, NCT01658124. Findings: Between July 4, 2013, and June 21, 2019, we randomly allocated 12 009 patients to receive tranexamic acid (5994, 49·9%) or matching placebo (6015, 50·1%), of whom 11 952 (99·5%) received the first dose of the allocated treatment. Death due to bleeding within 5 days of randomisation occurred in 222 (4%) of 5956 patients in the tranexamic acid group and in 226 (4%) of 5981 patients in the placebo group (risk ratio [RR] 0·99, 95% CI 0·82–1·18). Arterial thromboembolic events (myocardial infarction or stroke) were similar in the tranexamic acid group and placebo group (42 [0·7%] of 5952 vs 46 [0·8%] of 5977; 0·92; 0·60 to 1·39). Venous thromboembolic events (deep vein thrombosis or pulmonary embolism) were higher in tranexamic acid group than in the placebo group (48 [0·8%] of 5952 vs 26 [0·4%] of 5977; RR 1·85; 95% CI 1·15 to 2·98). Interpretation: We found that tranexamic acid did not reduce death from gastrointestinal bleeding. On the basis of our results, tranexamic acid should not be used for the treatment of gastrointestinal bleeding outside the context of a randomised trial

    Plant leaf imaging using time of flight camera under sunlight, shadow and room conditions

    Get PDF
    Presentado al ROSE 2012 celebrado en Magdeburgo (Alemania) del 16 al 18 de noviembre.In this article, we analyze the effects of ambient light on Time of Flight (ToF) depth imaging for a plant's leaf in sunlight, shadow and room conditions. ToF imaging is sensitive to ambient light and we try to find the best possible integration times (IT) for each condition. This is important in order to optimize the camera calibration. Our analysis is based on several statistical metrics estimated from the ToF data. We explain the estimation of the metrics and propose a method of predicting the deteriorating behavior of the data in each condition using camera flags. Finally, we also propose a method to improve the quality of a ToF image taken in a mixed condition having different ambient light exposures.This work is supported by the Danish Council for Strategic Research under project ASETA (www.aseta.dk) grant no. 09-067027, the Spanish Ministry of Science and Innovation under projects PAU + DPI2011-27510, the EU project GARNICS (FP7-247947) and the Catalan Research Commission (SGR-00155). W. Kazmi is funded by ASETA and S. Foix is supported by PhD fellowship from CSIC’s JAE program.Peer Reviewe

    Plant leaf imaging using time of flight camera under sunlight, shadow and room conditions

    No full text
    In this article, we analyze the effects of ambient light on Time of Flight (ToF) depth imaging for a plant’s leaf in sunlight, shadow and room conditions. ToF imaging is sensitive to ambient light and we try to find the best possible integration times (IT) for each condition. This is important in order to optimize camera calibration. Our analysis is based on several statistical metrics estimated from the ToF data. We explain the estimation of the metrics and propose a method of predicting the deteriorating behavior of the data in each condition using camera flags. Finally, we also propose a method to improve the quality of a ToF image taken in a mixed condition having different ambient light exposures
    corecore